HOME TEACHING

Other Proceedings

ATHENA Detector Proposal -- A Totally Hermetic Electron Nucleus Apparatus proposed for IP6 at the Electron-Ion Collider
ATHENA Collaboration

When, Where, and How to Open Data: A Personal Perspective
B. Nachman
Snowmass 2022

Artificial Intelligence for High Energy Physics
P. Calafiura, D. Rousseau, K. Terao (editors) et al.
World Scientific

Quantum Simulation for High Energy Physics
C. Bauer and Z. Davoudi (editors) et al.
Snowmass 2022

Jets and Jet Substructure at Future Colliders
B. Nachman. S. Rappoccio, N. Tran (editors) et al.
Snowmass 2022

Software and Computing for Small HEP Experiments
D. Casper, M. E. Monzani, B. Nachman (editors) et al.
Snowmass 2022

New directions for surrogate models and differentiable programming for High Energy Physics detector simulation
Andreas Adelmann et al.
Snowmass 2022

Advanced accelerator linear collider demonstration facility at intermediate energy
C. Benedetti et al.
Snowmass 2022

Simulations of Silicon Radiation Detectors for High Energy Physics Experiments
B. Nachman, T. Peltola (editors) et al.
Snowmass 2022

Symmetry Group Equivariant Architectures for Physics
D. Miller, M. Pettee (editors) et al.
Snowmass 2022

Accelerator and detector control for the EIC with machine learning
T. Britton and B. Nachman
JINST 17 (2022) C02022

Structure Functions and Parton Densities: a Session Summary
B. Nachman, K. Wichmann, P. Zurita
Proceedings for the DIS2021 Conference

Scaffolding Simulations with Deep Learning for High-Dimensional Deconvolution
B. Nachman
Nature Reviews Physics (2021)

Scaffolding Simulations with Deep Learning for High-Dimensional Deconvolution
A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman, A. Suresh, J. Thaler
ICLR simDL (2021)

Amplifying Statistics with Ensembles of Generative Models
A. Butter, T. Plehn, S. Diefenbacher, G. Kasieczka, B. Nachman
ICLR simDL (2021)

Radiation effects in the LHC experiments: Impact on detector performance and operation
I. Dawson (ed) et al. (Sensor measurements chapter co-edited by B. Nachman)

AI Safety for High Energy Physics
C. Shimmin and B. Nachman
Deep Learning for Physical Sciences, NeurlPS 2019

Tips and Tricks for Training GANs with PhysicsConstraints
L. de Oliveira, M. Paganini, B. Nachman
Deep Learning for Physical Sciences, NeurlPS 2017

Survey of Machine Learning Techniques for HighEnergy Electromagnetic Shower Classification
M. Paganini, L. de Oliveira, B. Nachman
Deep Learning for Physical Sciences, NeurlPS 2017

Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters
L. de Oliveira, M. Paganini, B. Nachman
Journal of Physics: Conference Series 1085 (2018) 042017 (ACAT 2017)

Deep Learning usage by Large Experiments
B. Nachman
Journal of Physics: Conference Series 1085 (2018) 022002 (ACAT 2017)

Theses

Investigating the Quantum Properties of Jets and the Search for a Supersymmetric Top Quark Partner with the ATLAS Detector
B. Nachman, Stanford Univesity Ph.D. Thesis 2016

Generating Sequences of the Two Dimensional Special Projective Linear Group over Fields of Prime Order, PSL(2,p)
B. Nachman, Cornell Univesity Senior Thesis 2012

Westside High School Cosmic Ray Observatory Project
B. Nachman, Westside High School Senior Project 2008